Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode

نویسندگان

  • Xiankun Zhang
  • Qingliang Liao
  • Shuo Liu
  • Zhuo Kang
  • Zheng Zhang
  • Junli Du
  • Feng Li
  • Shuhao Zhang
  • Jiankun Xiao
  • Baishan Liu
  • Yang Ou
  • Xiaozhi Liu
  • Lin Gu
  • Yue Zhang
چکیده

We establish a powerful poly(4-styrenesulfonate) (PSS)-treated strategy for sulfur vacancy healing in monolayer MoS2 to precisely and steadily tune its electronic state. The self-healing mechanism, in which the sulfur vacancies are healed spontaneously by the sulfur adatom clusters on the MoS2 surface through a PSS-induced hydrogenation process, is proposed and demonstrated systematically. The electron concentration of the self-healed MoS2 dramatically decreased by 643 times, leading to a work function enhancement of ∼150 meV. This strategy is employed to fabricate a high performance lateral monolayer MoS2 homojunction which presents a perfect rectifying behaviour, excellent photoresponsivity of ∼308 mA W-1 and outstanding air-stability after two months. Unlike previous chemical doping, the lattice defect-induced local fields are eliminated during the process of the sulfur vacancy self-healing to largely improve the homojunction performance. Our findings demonstrate a promising and facile strategy in 2D material electronic state modulation for the development of next-generation electronics and optoelectronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Structure and Dynamics of Single Platinum Atom Interactions with Monolayer MoS2.

We have studied atomic level interactions between single Pt atoms and the surface of monolayer MoS2 using aberration-corrected annular dark field scanning transmission electron microscopy at an accelerating voltage of 60 kV. Strong contrast from single Pt atoms on the atomically resolved monolayer MoS2 lattice enables their exact position to be determined with respect to the MoS2 lattice, revea...

متن کامل

First-Principles Study on the Structural and Electronic Properties of Monolayer MoS2 with S-Vacancy under Uniaxial Tensile Strain

Monolayer molybdenum disulfide (MoS₂) has obtained much attention recently and is expected to be widely used in flexible electronic devices. Due to inevitable bending in flexible electronic devices, the structural and electronic properties would be influenced by tensile strains. Based on the density functional theory (DFT), the structural and electronic properties of monolayer MoS₂ with a sulfu...

متن کامل

Strain-Induced Magnetism in Single-Layer MoS2: Origin and Manipulation

We investigate the strain-induced electronic and magnetic properties of single-layer (1L) MoS2 with vacancy defects using the density functional theory calculation. When the tensile strain is applied, 1L-MoS2 with vacancy becomes ferromagnetic and metallic. We elucidate that, from the electronic band structure of vacancy-defect-doped 1L-MoS2, the impurity bands inside the gap play a role of see...

متن کامل

Atomistic dynamics of sulfur-deficient high-symmetry grain boundaries in molybdenum disulfide.

As a common type of structural defect, grain boundaries (GBs) play an important role in tailoring the physical and chemical properties of bulk crystals and their two-dimensional (2D) counterparts such as graphene and molybdenum disulfide (MoS2). In this study, we explore the atomic structures and dynamics of three kinds of high-symmetry GBs (α, β and γ) in monolayer MoS2. Atomic-resolution tran...

متن کامل

The Effect of VMoS3 Point Defect on the Elastic Properties of Monolayer MoS2 with REBO Potentials

Structural defects in monolayer molybdenum disulfide (MoS2) have significant influence on the electric, optical, thermal, chemical, and mechanical properties of the material. Among all the types of structural defects of the chemical vapor phase-grown monolayer MoS2, the VMoS3 point defect (a vacancy complex of Mo and three nearby S atoms) is another type of defect preferentially generated by th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017